

Welcome to PyQL’s documentation!

PyQL provides a high-level API for defining GraphQL [https://graphql.org/] schemas.

It uses graphql-core [https://github.com/graphql-python/graphql-core/] behind the scenes, which means generated schemas
are fully compatible with that library.

What about Graphene?

Graphene [https://graphene-python.org/] serves a similar purpose, but its object-based API is not
great for defining large schemas. Also, there are parts that are
confusing / error prone (eg. mixing field attributes with field
constructor parameters).

Also, we’re trying to use Python facilities as much as possible for
the schema definition (type annotations in particular), which makes
the library friendlier to anyone already familiar with the Python
language (no need to invent / learn new concepts).

This of course means the minimum supported Python version is 3.5,
as type hints were first supported in that release.

Contents:

	Getting started
	Installation

	Defining a basic schema

	Querying

	Useful links

	Schema definition
	Schema object

	Objects

	Scalar types

	Enums

	Lists

	Interfaces

	Input objects

	Documenting objects

Indices and tables

	Index

	Module Index

	Search Page

Getting started

Installation

Install from PyPi:

pip install pyql

Defining a basic schema

from pyql import Schema

schema = Schema()

@schema.query.field('hello')
def resolve_hello(root, info, argument: str = 'stranger') -> str:
 return 'Hello ' + argument

Or you can create your root Query object explicitly if you prefer doing so:

from pyql import Object, Schema

Query = Object('Query')

@Query.field('hello')
def resolve_hello(root, info, argument: str = 'stranger') -> str:
 return 'Hello ' + argument

schema = Schema(query=Query)

Querying

result = schema.execute('{ hello }')
print(result.data['hello']) # "Hello stranger"

Passing the argument as a variable
result = schema.execute("""
query hello($arg: String) {
 hello (argument: $arg)
}
""", variables={'arg': 'World'})
print(result.data['hello']) # "Hello World"

Useful links

	PyQL on PyPi [https://pypi.org/project/PyQL/]

	PyQL source code on GitHub [https://github.com/rshk/pyql]

	PyQL documentation [https://pyql-lib.readthedocs.io/en/latest/]

Schema definition

One of the main goals of PyQL is providing a clean way of defining
GraphQL schemas.

In contrast with Graphene, we attempt at providing a cleaner schema
definition API, that also reduces ambiguity and verboseness. We
attempt to use existing facilities in Python as much as possible
(eg. type annotations).

Contents:

	Schema object
	Passing extra types

	Compilation

	Execution

	Objects
	Field from resolver

	Resolver returning object

	Default resolver

	Namespace fields

	Container types

	Scalar types
	Non-nulls

	Extra built-in scalar types

	Custom scalar types

	Enums
	Values vs names

	Lists

	Interfaces
	Automatic type resolution

	Input objects

	Documenting objects

TODO:

	unions

	documentation

Schema object

To define a schema, simply create an instance of pywl.Schema:

from pyql import Object, Schema

schema = Schema(
 query=Query,
 mutation=Mutation,
 subscription=Subscription)

You can pass your root query / mutation / subscription objects as
arguments to the Schema constructor.

Warning

You must provide a root query object, and it must have at least
one field. This requirement is enforced by graphql-core.

Passing extra types

If you are using interfaces, chances are you’re
only using your interface type in the schema definition (so the
concrete types are not reachable from the root object).

If that’s the case, you must pass them explicitly to the schema constructor:

from pyql import Object, Interface, Schema

Character = Interface('Character', ...)
Human = Object('Human', interfaces=[Character], ...)
Droid = Object('Droid', interfaces=[Character], ...)

schema = Schema(..., types=[Human, Droid])

Note

This is likely not going to be necessary in a future version, as
we’re planning to track concrete objects using a given interface,
so we can resolve them automatically behind the scenes.

Compilation

To convert a pyql.Schema instance to a schema that’s understood by
graphql-core, you need to compile it:

compiled = schema.compile()

Now you can use it, eg:

from graphql import graphql

result = graphql(compiled, '{yourQuery}', ...)

Execution

For convenience, we provide a schema.execute() method to quickly
run queries against the schema. This is especially useful during
testing:

schema.execute("""
query foo($arg: String) {
 bar (arg: $arg) {
 baz, quux
 }
}
""", variables={'arg': 'VALUE'})

Behind the scenes, it will compile the schema and call graphql().

Return value is an object with errors and data attributes.

Objects

Create an instance of pyql.Object:

Example = Object(
 'Example',
 description='An example object',
 fields={
 'my_str': str,
 'my_int': int,
 'my_float': float,
 'my_bool': bool,
 'my_id': ID,
 })

Note

Field names will be converted automatically from snake_case to
camelCase for you, so you can use the right naming convention
in your Python / JavaScript code.

Field from resolver

You can define a field quickly by using the Object.field
decorator. Field type and arguments will be picked up automatically by
inspecting type annotations:

Example = Object('Example')

@Example.field('hello')
def resolve_hello(root, info, name: str = 'stranger') -> str:
 return 'Hello ' + name

Python types will be converted automatically to GraphQL types.

If you need to use custom types, simply annotate your resolver accordingly.

Resolver returning object

Object instances can be instantiated and treated as normal Python
objects.

Example = Object('Example', {'foo': str, 'bar': str})

Query = Object('Query')

@Query.field('example')
def resolve_example(root, info) -> Example:
 return Example(foo='A', bar='B')

schema = Schema(query=Query)

Default resolver

The default resolver for a field will simply attempt to pick the
same-named attribute from the root object.

This way you don’t have to define something like this for every simple
field you have on your objects:

@User.field('name')
def resolve_user_name(root, info) -> str:
 return root.name

@User.field('email')
def resolve_user_email(root, info) -> str:
 return root.email

...

Namespace fields

Sometimes it’s convenient to “namespace” objects. Problem is, field
resolution will stop when an object resolver returns None, so you
need to define your resolvers like this:

from pyql import ID, Object

User = Object('User', {'id': ID, 'name': str})

Users = Object('Users')

@Users.field('list')
def resolve_list_users(root, info) -> List[User]:
 pass

@Users.field('search')
def resolve_search_users(root, info, query: str) -> List[User]:
 pass

Query = Object('Query')

@Query.field('users')
def resolve_users(root, info) -> Users:
 # Needs to return something other than None, or the resolvers
 # for list / search will never be called
 return Users()

You can replace the resolve_users definition with:

Query.namespace_field('users', Users)

This allows you to run queries like:

{
 users {
 list {
 id
 name
 }
 }
}

Container types

Objects can be “instantiated” to create objects you can return from
your resolvers:

MyObject = Object('MyObject', fields={'foo': str, 'bar': str})

@Query.field('example')
def resolve_example(root, info) -> MyObject:
 return MyObject(foo='FOO', bar='BAR')

This will also ensure types are understood correctly when using
interfaces.

Scalar types

The following scalar types are currently defiened in the GraphQL spec,
and supported by PyQL:

	str -> String

	int -> Int

	float -> Float

	bool -> Boolean

	The ID type, defined as pyql.ID (there is no equivalent in
Python). Will accept strings (or ints) as field value.

Non-nulls

Resolver arguments without a default value will be considered
NonNull automatically.

You can explicity wrap a type in pyql.NonNull for your output
types (although it doesn’t make too much sense to validate your output
fields…).

Extra built-in scalar types

Some more scalar types, not defined by the GraphQL spec, are supported
for convenience:

	datetime.datetime, in ISO 8601 format

	datetime.date, in ISO 8601 format

	datetime.time, in ISO 8601 format

Custom scalar types

	TODO: document how to create / register custom GraphQL scalar types

	TODO: also provide an API to register custom scalar types

Enums

You can use Enums as input / output types as you would with any scalar type.

Start by defining your Enum type:

from enum import Enum

class Color(Enum):
 RED = 'red'
 GREEN = 'green'
 BLUE = 'blue'

Then, simply use it to annotate your resolvers:

@Query.field('random_color')
def resolve_random_color(root, info) -> Color:
 return Color.RED

Or for an input type:

DESCRIPTIONS = {
 Color.RED: 'Cherry Red',
 Color.GREEN: 'Grass Green',
 Color.BLUE: 'Sky Blue',
}

@Query.field('describe_color')
def resolve_episode(root, info, color: Color) -> str:
 return DESCRIPTIONS[color]

Values vs names

Keep in mind that enum values will be used externally; member names
are for internal use only.

So, for example, the first query will return:

{ "randomColor": "red" }

Likewise, the second and third query will accept red (the enum
value) and not "RED" as input value.

Valid query:

{ describeColor(color: red) }

Invalid query:

{ describeColor(color: RED) }

Lists

You can use typing.List for defining list fields:

from typing import List

@Query.field('example_list')
def resolve_example_list(root, info) -> List[str]:
 return ['A', 'B', 'C']

In alternative, there’s a pyql.List class you can use as well.

Note that you need to instantiate it, rather than subscripting:

from pyql import List

@Query.field('example_list')
def resolve_example_list(root, info) -> List(str):
 return ['A', 'B', 'C']

Interfaces

To define an interface, instantiate pyql.Interface:

from pyql import Interface

Character = Interface('Character', fields={
 'id': ID,
 'name': str,
})

To define an object using a given interface:

from pyql import Object

Human = Object('Human', interfaces=[Character], fields={
 'id': ID,
 'name': str,
 'home_planet': str,
})

Droid = Object('Droid', interfaces=[Character], fields={
 'id': ID,
 'name': str,
 'primary_function': str,
})

Automatic type resolution

TL;DR: if your resolver is returning instances of the correct
object container, i.e. Human(...) or Droid(...) in the above
example, the correct type will be figured out and everything will work
just fine.

GraphQL core requires you to either pass a resolve_type function
to your Interface, or provide a is_type_of function on the
concrete Object.

For convenience, if no is_type_of is passed to an Object,
we’ll simply recognise as belonging to that object all instances of
the “container” type for the object.

Or in better words:

MyObj = Object('MyObj', fields={'foo': str})

obj = MyObj(foo='VALUE')

When compiling MyObj to a GraphQLObject, is_type_of
will be defined as:
#
def is_type_of(value, info):
return isinstance(value, MyObj.container_object)

Input objects

Input objects are used to pass structured objects as arguments to
queries or mutations.

Create an instance of pyql.InputObject:

PostInput = InputObject('PostInput', fields={
 'title': NonNull(str),
 'body': str,
})

An example mutation making use of the input object:

Post = Object('Post', fields={
 'id': ID,
 'title': str,
 'body': str,
})

Mutation = Object('Mutation')

@Mutation.field('create_post')
def resolve_create_post(root, info, post: PostInput) -> Post:

 # The ``post`` argument is an instance of PostInput.
 # Attributes are accessible as expected.

 # Let's pretend we stored the data in our database and want to
 # return information about the newly created post:

 return Post(
 id='1',
 title=post.title,
 body=post.body)

schema = Schema(
 query=Query,
 mutation=Mutation)

A query against the schema might look like this:

query = """
mutation createPost($post: PostInput!) {
 createPost(post: $post) {
 id, title, body
 }
}
"""

variables = {'post': {'title': 'Hello', 'body': 'Hello world'}}

schema.execute(query, variables=variables)

assert result.errors is None
assert result.data == {
 'createPost': {
 'id': '1',
 'title': 'Hello',
 'body': 'Hello world',
 }
}

Documenting objects

Documentation loading from objects / resolvers is currently work in
progress, but it’s going to use Python docstrings as much as possible.

Argument documentation will also be obtained from parsing the resolver
docstring.

Index

 _static/minus.png

_static/plus.png

_static/file.png

_static/pyql-logo.png

_static/up-pressed.png

_static/pyql-logo-128x128.png

_static/up.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to PyQL’s documentation!

 		
 Getting started

 		
 Installation

 		
 Defining a basic schema

 		
 Querying

 		
 Useful links

 		
 Schema definition

 		
 Schema object

 		
 Passing extra types

 		
 Compilation

 		
 Execution

 		
 Objects

 		
 Field from resolver

 		
 Resolver returning object

 		
 Default resolver

 		
 Namespace fields

 		
 Container types

 		
 Scalar types

 		
 Non-nulls

 		
 Extra built-in scalar types

 		
 Custom scalar types

 		
 Enums

 		
 Values vs names

 		
 Lists

 		
 Interfaces

 		
 Automatic type resolution

 		
 Input objects

 		
 Documenting objects

_static/ajax-loader.gif

